Inhibition of the macrophage-induced oxidation of low density lipoprotein by interferon-gamma.
نویسندگان
چکیده
The regulation of the macrophage-induced oxidation of low density lipoprotein (LDL) by cytokines was investigated. As an initial source of cytokines, medium from an activated type 2 helper T-cell clone was tested. This cell-free supernatant inhibited the subsequent oxidation of LDL by mouse peritoneal macrophages. The inhibition was concentration- and time-dependent as measured by changes in thiobarbituric acid (TBA) reactive substances. In addition, there were decreases in conjugated diene formation as well as the generation of LDL particles with an increased net negative charge that were recognized by the scavenger receptor. The inhibition was not due to a decrease in cell viability or to nonspecific antioxidant activity, as assessed by measuring phagocytic activity and metal ion-induced oxidation of LDL, respectively. Using antibodies that inactivate specific cytokines, the role of select individual cytokines in this inhibition was investigated. Addition of antibodies against interleukin-3 (IL-3), granulocyte/macrophage-colony stimulating factor (GM-CSF), or tumor necrosis factor alpha (TNF alpha) to the media had little or no effect on the ability of the cytokines to affect oxidation by macrophages, whereas anti-interferon-gamma (IFN-gamma) antibodies completely reversed the inhibition induced by the T-cell supernatant. A role for this cytokine was confirmed using recombinant IFN-gamma. A concentration-dependent inhibition was produced with a maximum inhibition to 24% of control cells, whereas smooth muscle cell-dependent LDL oxidation was not affected. To examine the cellular basis for the inhibition, the effect of IFN-gamma on oxidant activities (O2- production, lipoxygenase activity, and thiol production) were measured. IFN-gamma at concentrations that maximally inhibit LDL oxidation stimulated the phorbol myristate acetate (PMA)-induced production of O2- 1.4-times greater than control cells after one hour. Similarly, thiol production was increased 29% by IFN-gamma pretreatment. In contrast, macrophage lipoxygenase was inhibited approximately 21%. Based on these in vitro findings, the potential regulation of macrophage LDL oxidation by IFN-gamma in vivo was also investigated. Macrophages from Toxoplasma gondii-infected mice have been shown previously to be activated in situ by an IFN-gamma-dependent mechanism. These were tested for their ability to oxidize LDL. Macrophages from these mice oxidized LDL to a much lesser extent than cells from age-matched control mice, demonstrating that the ability of macrophages to oxidize lipoprotein may also be susceptible to regulation possibly also by IFN-gamma in vivo. Together these studies demonstrate that the cell-mediated oxidation of LDL can be regulated by cytokines, specifically IFN-gamma. This mode of regulation may play a role in regulating this process in the developing atherosclerotic lesion.
منابع مشابه
The Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein
The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...
متن کاملEFFECTS OF UBIQUINOL-1 0 AND f3-CAROTENE ON THE IN VITRO SUSCEPTIBILITY OF LOW-DENSITY LIPOPROTEIN TO COPPER-INDUCED OXIDATION
ABSTRACT Background: Dietary antioxidant intake has been reported to be inversely associated with coronary miery disease. To clarify the possible role oflipophilic antioxidants in the prevention of atherosclerosis, we investigated the effects ofubiquinol-1 0 and ~-carotene on the susceptibility oflow-density lipoprotein(LD L) to oxidative modification. Methods: In this study, first "u...
متن کاملEffect of Lycopene on Formation of Low Density Lipoprotein-Copper Complex in Copper Catalyzed Peroxidation of Low Density Lipoprotein, as in vitro Experiment
Background: A great deal of evidence has indicated that oxidatively modified LDL plays a critical role in the initiation and progression of atherosclerosis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper ions to LDL is usually thought to be a prerequisite for LDL oxidation by copper...
متن کاملThe Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein
The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...
متن کاملGlucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein
Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of lipid research
دوره 35 5 شماره
صفحات -
تاریخ انتشار 1994